Inferential Summary

<table>
<thead>
<tr>
<th>unknown pop. Quantities of main interest</th>
<th>(\mu = \text{pop. mean annual family income in 2009})</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimate of (\mu)</td>
<td>(\bar{x} = $82.9) k</td>
</tr>
<tr>
<td>size or take (\bar{x}) as (\hat{\mu}) for (\mu)</td>
<td>(SE(\bar{x}) = \frac{s}{\sqrt{n}} = 8.35k)</td>
</tr>
<tr>
<td>99.9% CI for (\mu)</td>
<td>(($71.5k, 894.2k))</td>
</tr>
</tbody>
</table>

\(\text{pop.} \) \(\longrightarrow \) \(\text{sample} \)

\(\text{random} \) [] \(\text{if} \) \(\longrightarrow \) ? \(\text{if} \)

\(\text{known} \) \(\text{statistical based on inference} \) []

\(\text{pop.} \) \(\rightarrow \) ? \(\text{probability} \)
on the basis of this IID sample of size \(n = 842 \), we think that \(\mu \) is around \(\hat{\mu} = 882.9k \), give or take about \(\hat{SE}(\hat{\mu}) = 83.5k \), and we're 99.9% confident (given that our assumptions are correct) that \(\mu \) is between $71.5k and $92.5k.

how measure how accurate \(\hat{\mu} \) is as an estimate of \(\mu \) ?

\[
p\left(\left| \frac{\hat{\mu} - \mu}{\epsilon} \right| \leq \text{small} \right) = \text{big} \text{ (close to 1)}
\]

\[\text{Frequentist (Mr. Neyman)}\]
Estimate \(\mu \) using

use a different ten for \(\sigma(\bar{X}) \):

\[
\text{Estimated Standard Error of } \bar{X} = \frac{\tilde{X}^4}{\sqrt{\mu}} = \frac{8.5}{\sqrt{84.2}} = 8100.1 \text{ k} < 83.45 \text{ k}
\]

\(\tilde{SE} \) $3.5k

\[P \left(3.29 \tilde{SE} < \bar{X} < 3.29 \tilde{SE} \right) = 0.999 \]

\(P \left(\frac{\bar{X} - \mu}{3.29 \tilde{SE}} < Z < \frac{\bar{X} + \mu}{3.29 \tilde{SE}} \right) = 0.999 \]

\(\mu \approx 99.9\% \)

\(\mu \approx 99.9\% \)
Mr. Ni's proposal

We use \(\bar{x} \pm 3.29 \frac{s}{\sqrt{n}} (\bar{x}) \) as a \(100(1-\alpha)% \) confidence interval for \(\mu \) (\(\alpha = 0.001 \)).

\[
\bar{x} \pm \left(1 - \frac{1}{2} \right) \frac{5}{\sqrt{n}}
\]

99.9% CI for \(\mu \)

\[
71.5 \text{ } 88.2 \text{ } 84.2
\]

Person 1:

I think P's annual net pay was \$70,000

P_2 (I think \(\mu \) was \$100k)

P_3 (I think \(\mu \) was \$50k)

Data does not support that theory.
but we think that \(\mu \) is close to \(\$83K \) or \(\$90K \)

\[\mu \neq \$90K \]

\[\pm \$3.5K \]

\[99.9\% \text{ CI} \]

\[871.5K \pm 82.9K \]

\[894.2K \]

Since \(\$70K \) is not in our 99.9\% CI for \(\mu \), the difference between \(\bar{X} = \$82.9K \) (statistically significant) \(\mu_0 = \$70K \) is statistically significant (at the 99.9\% confidence level)

\[P_3: \mu = \$90K \]

no statistically significant difference between \(\bar{X} \) and \(\mu_0 \)

\(\text{diff. is probably real} \)

\(\text{diff. is likely due to unlucky random sampling} \)
\[P \left(87.5k < \mu < 94.2k \right) \geq 0.999 \]

Fixed unknown constant

Neyman:

\[\text{you will achieve about a 99.9\% hit rate with my method} \]