This catch-up time: topics next time:

Discrete-time Markov chain with finite state space $S = \{1, 2, \ldots, k\}$

Initial distribution at time 1

$v = (v_1, v_2, \ldots, v_k)$

$s_0 = v_0 = \frac{1}{k} \sum v_i = 1$

$p = \text{one-step transition matrix}$

$k \times k$

(i,j) entry of p

$p_{ij} = P(X_{n+1} = j \mid X_n = i) \quad \text{(constant)}$

(time homogeneous)

$p(X_1 = i) = v_i, \quad i = 1, \ldots, k$

$p(X_2 = j) = ?$ hard to think about

Marginal, so get help:

X_2 depends on X_1, so partition over X_1 and use the LP p:
\[P(\xi_2 = j) = \frac{1}{k} \sum_{i=1}^{k} \mathbb{P}(\xi_2 = j), \xi_1 = i) \]

\[\begin{array}{c}
\begin{array}{c}
\xi_1 = 1 \\
\xi_1 = 2 \\
\xi_1 = 3 \\
\xi_2 = 1 \\
\xi_2 = 2 \\
\xi_2 = 3 \\
\xi_2 = 4 \\
\end{array}
\end{array}\]

\[= \frac{k}{2} \sum_{i=1}^{k} P(\xi_1 = i) \beta(\xi_2 = j | \xi_1 = i) \]

\[= \frac{k}{2} \sum_{i=1}^{k} v \cdot p_{ij} \]

(looks like vector dot product)

\text{Take } j = 1 \]

\[P(\xi_2 = 1) = \frac{1}{k} \sum_{i=1}^{k} v_i \cdot p_{ij} = \]

\[(v_1, v_2, \ldots, v_k) \begin{pmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{k1} \end{pmatrix} \]

This works for all \(j = 1, \ldots, k \).

Collect results together in matrix notation:
\[(\nu_1, \ldots, \nu_k) \cdot \begin{pmatrix} p_{11} & \cdots & p_{1k} \\ \vdots & \ddots & \vdots \\ p_{k1} & \cdots & p_{kk} \end{pmatrix} \sim \begin{pmatrix} \nu_1 \\ \vdots \\ \nu_k \end{pmatrix} = \nu \mathbf{p}, \quad \sim_k = 1\]

Distribution of where the chain is at time 2 is \(\nu\); at time 2 it's \(\nu \mathbf{p}\); by exactly the same reasoning at time 3 it's \(\nu \mathbf{p}^2\); \(\ldots\); at time \(m\) it's \(\nu \mathbf{p}^{m-1}\).

By question: does \(\lim_{m \to \infty} \nu \mathbf{p}^{m-1}\) exist? Exso it would be the equilibrium distribution.
So 2 ways to find equilibrium distribution:

1. See if \(\lim_{n \to \infty} P^m \) exists.

2. Find \(\mathbf{v} \) such that \(\mathbf{v} P = \mathbf{v} \), i.e., find a left eigenvector of \(P \) with (left) eigenvalue \(1 \) \(\iff \) find a right eigenvector of \(P^T \) (transpose) with right eigenvalue \(1 \).

- Suppose \(\mathbf{y} = c \mathbf{x} \) \(c \neq 0 \):
 \[
 A \mathbf{y} = A(c \mathbf{x}) = c A \mathbf{x} = c \lambda \mathbf{x} = 0 \mathbf{x},
 \]
 \[
 \implies A \mathbf{x} = \mathbf{0}.
 \]
p-step transition matrix $k = 1$

\[\sum_{k=1}^{p} \lambda_k \]

the λ that come out of your eigenanalysis software will have $0 \leq \lambda_i$

but not necessarily

\[\sum_{k=1}^{p} \lambda_k = 1 \]

let λ_i with

just divide λ_k

\[\sum_{k=1}^{p} \lambda_k \]
Adult human height measurements like (conceptually) continuously on \(\mathbb{R}^+ \) bivariate PDF

\[
f_{x_1, x_2}(x_1, x_2) = \frac{1}{{\sigma_1} \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 \right]
\]

Level sets (contours): \(f_{x_1, x_2}(x_1, x_2) = c \)
\(x_2 \) = \(\beta_0 + \beta_1 x_1 \)

\(\bar{x}_2 - \beta \bar{x}_1 \)

\(x_2 = \bar{x}_2 + r \frac{s_2}{s_1} (x_1 - \bar{x}_1) \)

\(\mathbb{E} \left(\frac{\bar{x}_2}{\bar{x}_1} \right) \sim \text{univariate normal} \)

\(V \left(\frac{\bar{x}_2}{\bar{x}_1} = \chi_i^* \right) \)

\(= \sigma_2^2 (1 - \rho^2) \)

\(r \)

\(\beta \)

\(\sigma \)

\(s \)

\(\text{GRE} \)

\(\text{score} \)

\(\text{time} \)

\(\text{1st time} \)