real purpose of education:

to learn how to learn (to learn how to teach yourself new ideas & methods)

meta-code (process of problem-solving)

when you encounter a new problem P, it's often helpful to find another problem P'

Hold with 2 properties:

1. P' is similar in (all) relevant ways
2. you know how to solve P'

Then you can use solution to P' to
to help it so many phen. THEN

P_{old}

T-S case $\Rightarrow P(1 \text{ or more T-S babies in family of } h = 5 \text{ kids, both parentscamera})$

$\square \quad \square$ \hspace{1cm} $P(T-S \text{ on any 1 trial}) = p = \frac{1}{4}$

2 (4) $P(\text{at least 1 GP among } 182,900,000 \text{ lottery participants})$

$\square \quad \square$ \hspace{1cm} $p(\text{GP}) = p = \frac{1}{292,201,388}$

$\square \quad \square$ \hspace{1cm} $P(\text{at least one success in IID})$

IFD success-failure trials, \downarrow

$P(\text{success on any 2 trials}) = \square = 1 - (1-p)^2$
$\Pr = P(\text{we hire best person with quality pool of size } r)$

As $r \uparrow$, we get more & better info about quality of applicants, but as $r \uparrow$ our chance of not hiring best person because that person is in \mathcal{R}_P.
meta-code (process of problem-solving)

we almost choose a point on this line

when the problem of interest is too obstruct to see useful patterns,

general:

set playfield: pick some specific numbers \(n \) and \(r \), \(1 \leq n \), \(0 \leq r < n \)

play around with \(r + 1 \)

\[
\begin{array}{c|c|c|c}
 n & r & \text{QP} & \text{hiring pool with applicants} \\
 8 & 3 & 41 & 27 \quad \text{slot filling} \\
\end{array}
\]
Assume no ties in quality assessment.

Invent quality score, from 0 - 100.

Pick $i > r$; e.g., $i = 5$.

4.1-72 50 \[\frac{41}{72} = \frac{50}{q} \]

\[r \]

4.4 $p_{ij} = \frac{r}{i} = \frac{3}{5}$

4.6 $p(A1 | B_i) = 0$ for $i \leq r$.
\[p_r = P(A \text{ having pre-specified } r \text{ before interviewing begins}) \]

\[p_0 = \frac{1}{n} \]

\[0 < r < n \]

\[p_r = \frac{r}{n} \quad \text{for } i = r+1, \ldots, n \]

\[P(A) \text{ hard} \]

\[P(A|E_i) \text{ easy} \]

\[P(A1B_i) = \begin{cases} 0 & \text{for } i \leq r \\ \frac{r}{n} & \text{for } i > r \end{cases} \]

\[P(B_i) = \frac{1}{n} \]
\[P(A) = P \left[\left(A \text{ and } B_1 \right) \lor \left(A \text{ and } B_2 \right) \lor \cdots \lor \left(A \text{ and } B_n \right) \right] \]

mutually exclusive

\[= P \left(A \text{ and } B_1 \right) + P \left(A \text{ and } B_2 \right) + \cdots + P \left(A \text{ and } B_n \right) \]

\[= P(B_1) P(A | B_1) + P(B_2) P(A | B_2) + \cdots + P(B_n) P(A | B_n) \]

\[P(B_i) = \frac{1}{n} \]

\[P(A | B_i) = \begin{cases} \frac{1}{r} & \text{for } i \leq r \\ \frac{1}{i-1} & \text{for } i > r \end{cases} \]

\[2r = (p_r - p_{r-1}) \text{ for } 1 \leq r \leq n \]
\[E_1 = (p_i - p_o) \quad E_2 = (p_2 - p_1) \]

\[\Sigma r = p_r - p_{r-1} \]

\[E_1 = \left(\frac{1}{n^2} \sum_{i=1}^{n} \frac{1}{i(i+1)} \right) - \frac{1}{n} \]

\[p_r = \frac{r \sum_{i=r+1}^{n} \frac{1}{i}}{n} \]
\[E_2 = \frac{1}{2} - 1 \]

\[\left(\frac{\sum_{i=3}^{n} \frac{1}{i}}{n} \right) - \left(\frac{\sum_{i=2}^{n} \frac{1}{i}}{n} \right) \]

\[\sum_{i=2}^{n} \frac{1}{i} = \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n-1} \]

\[\sum_{i=2}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \ldots + \frac{1}{n-1} \]

\[\sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots \]

\[= +\infty \]