table 3
\[P(D \text{ and } S) = \frac{139}{1814} \]

\[P(D | \text{not } S) = \frac{230}{732} \]

association between \(E \) and \(S \)

as smoking goes from (never smoked) to (current smoker) in the 1950s, (tables)

\[P(\text{dead} | \text{never smoked}) > P(\text{dead} | \text{current smoker}) \]

\[P(\text{dead}) \downarrow (!) \]

assoc. between \(E \) and \(S \)

as \(S \uparrow \), assoc. between \(E \) and \(S \)

as \(E \uparrow \), assoc. between \(E \) and \(S \)

as \(E \uparrow \), assoc. between \(E \) and \(S \)
P(at least 1 GP winner in this law) ~ rand price

meta-code (process) how to solve old with problems

when solving a new problem
P(new), try to find another problem P(old) with

2 properties:
1. P(new, P(old) similar in relevant ways
2. you know how to solve P(old)

T/F: P(1 or more T-slog is 5 bits, data parents carry 4)
P(1 or more interesting things happening in n trials) < not
\[p(1) = p \]
\[
\text{I} = 1 - \left(1 - \frac{1}{4}\right)^5
\]

\[
\text{II} = 1 - (1 - p)^5
\]

\[
\text{Intensity Ring \(\text{I} \)} \leftrightarrow \text{ person } i \quad \text{w.p. } \frac{1}{292,201,335}
\]

\[
P(\text{II}) = p = \frac{1}{292,201,335}
\]

\[
h = 182,900,000
\]

\[
\text{I}(81.15) = \frac{911.5}{911.5 + 0}
\]

\[
w_{\text{link}} = P(81.15) \cdot P(0)
\]

\[
= \frac{(33)(64)}{(69)(5)} \cdot \frac{(1)(26)}{(26)(1)} = \frac{1}{1138.53}
\]
\[
\begin{pmatrix}
1.1 \\
\frac{11238513}{26}
\end{pmatrix} = \begin{pmatrix}
1.125 \\
11238513
\end{pmatrix}
\]

1. Identify all different sources of information.
2. Choose T/F symbols carefully to stand for those information sources.

Number 3

```
meta-code
(process)
how to solve prob. stat. problems
```

4. Who actually will be pardoned?
6. What Warden says:

\[
A = \begin{pmatrix}
A \text{ jet's pardon}
\end{pmatrix}
\]
\[
B = \begin{pmatrix}
B
\end{pmatrix}
\]
\[
c = \begin{pmatrix}
c
\end{pmatrix}
\]

\[
W = x
\]

(warden says +

\[\text{will not be} \]

\[\text{pardoned} \]

(unknown)
\[? = P(\overline{W} = B) \text{ (we want)} \]

\[\text{data unknown} \]

\[P(\overline{W} = A | A) = 0 \]

\[P(\overline{W} = B | B) = 0 \]

\[P(\overline{W} = C | C) = 0 \]

\[P(\overline{W} = B | A) = \frac{1}{2} \]

\[P(\overline{W} = C | A) = \frac{1}{2} \]

\[\frac{1}{3} \quad \frac{1}{2} \]

\[\text{method III: } P(A | \overline{W} = B) = \frac{P(A) \cdot P(\overline{W} = B | A)}{P(\overline{W} = B)} \]

\[\text{wanderer's behavior hard to think about without knowing the truth} \]
So: extend the conversation: partition over facts (unknown)

(we're computing)

\[P(W = B) \]

\[P(W = B) = P(W = B \text{ and } A) + P(W = B \text{ and } B) + P(W = B \text{ and } C) \]

\[P(\text{rain in SC tomorrow} | \text{cold front moves in}) \]